Odpowiedź :
1.
[tex]2x^{2}-5x-3 = 0\\\\a = 2, \ b = -5 \ c = -3\\\\\Delta = b^{2}-4ac = (-5)^{2}-4\cdot2\cdot(-3) = 25 + 24 = 49\\\\\sqrt{\Delta} = \ssqrt{49} = 7\\\\x_1 = \frac{-b-\sqrt{\Delta}}{2a} = \frac{-(-5)-7}{2\cdot2} = \frac{-2}{4}} =-\frac{1}{2}\\\\x_2 = \frac{-b+\sqrt{\Delta}}{2a} = \frac{5+7}{4} = \frac{12}{4} = 3\\\\x \in \{-\frac{1}{2}, 3\}[/tex]
2.
[tex](x-2)^{2} = 9\\\\x^{2}-4x+4-9 = 0\\\\x^{2}-4x-5 = 0\\\\a = 1, \ b = -4, \ c = -5\\\\\Delta = b^{2}-4ac = (-4)^{2}-4\cdot1\cdot(-5) = 16+20 = 36\\\\\sqrt{\Delta} = \sqrt{36} = 6\\\\x_1 = \frac{-(-4)-6}{2} =\frac{-2}{2} = -1\\\\x_2 = \frac{-(-4)+6}{2} = \frac{10}{2} = 5\\\\x \in\{-1,5\}[/tex]
a)
[tex]2x^2-5x-3=0\\\\a=2, \ b=-5, \ c=-3\\\\\Delta=(-5)^2-4\cdot2\cdot(-3)=25+24=49\\\\\sqrt{\Delta}=\sqrt{49}=7\\\\x_1=\frac{-(-5)-7}{2\cdot2}=\frac{5-7}{4}=\frac{-2}{4}=\boxed{-0,5}\\\\x_2=\frac{-(-5)+7}{2\cdot2}=\frac{5+7}{4}=\frac{12}{4}=\boxed3[/tex]
b)
[tex](x-2)^2=9\\\\x^2-4x+4=9 \ \ /-9\\\\x^2-4x-5=0\\\\a=1, \ b=-4, \ c=-5\\\\\Delta=(-4)^2-4\cdot1\cdot(-5)=16+20=36\\\\\sqrt{\Delta}=\sqrt{36}=6\\\\x_1=\frac{-(-4)-6}{2\cdot1}=\frac{4-6}{2}=\frac{-2}{2}=\boxed{-1}\\\\x_2=\frac{-(-4)+6}{2\cdot1}=\frac{4+6}{2}=\frac{10}{2}=\boxed5[/tex]
Wykorzystane wzory
[tex]y=ax^2+bx+c\\\\\Delta=b^2-4ac\\\\x_1=\frac{-b-\sqrt{\Delta}}{2a} \ \text{oraz} \ x_2=\frac{-b+\sqrt{\Delta}}{2a}\\\\(a-b)^2=a^2-2ab+b^2[/tex]
Kiedy i ile rozwiązań ma równanie? Wyjaśnienie z wyróżnikiem, czyli tzw. Deltą (Δ)
Gdy Δ > 0 → równanie ma dwa rozwiązania
Gdy Δ < 0 → równanie nie ma rozwiązania
Gdy Δ = 0 → równanie ma jedno rozwiązanie ([tex]x_0=\frac{-b}{2a}[/tex])