Odpowiedź :
Odpowiedź:
Szczegółowe wyjaśnienie:
2^10/2=2^9---fałsz
2×2^10=2^11---fałsz
__________
2,3×6000=13800=1,38×10^4---prawda
1,2:600=12/10 :600=12/10×1/600=12/6000=1/500=2/1000=2×10^-3---prawda
[tex]zad.8\\\\zad.b\\\\\dfrac{1}{2} \cdot 2^{10} =\dfrac{2^{10} }{2} =\dfrac{2^{10} }{2^{1} } =2^{10-1} =2^{9}~~tyle ~~wynosi~~polowa~~liczby~~2^{10} \\\\korzystam~~ze~~wzoru:~~\dfrac{x^{n} }{x^{m} } =x^{n-m} \\\\Odp:~~ F[/tex]
[tex]zad.b\\\\2\cdot 2^{10} =2^{1} \cdot 2^{10} =2^{1+10} =2^{11} ~~tyle ~~wynosi~~liczba ~~2~~razy~~wieksza~~od~~2^{10} \\\\korzystam~~ze~~wzoru:~~x^{n} \cdot x^{m} =x^{n+m} \\\\Odp:~~F[/tex]
[tex]zad.9\\\\notacja~~wykladnicza:~~a\cdot 10^{n} ~~, ~~1\leq a\leq 10~~, ~~n\in C[/tex]
[tex]zad.a\\\\2,3\cdot 6~000=2,3\cdot 6\cdot 1000=13,8\cdot 1000=13,8\cdot 10^{3} =1,38\cdot 10^{1} \cdot 10^{3}=1,38\cdot 10^{1+3}=1,38\cdot 10^{4}\\\\korzystam ~~ze~~wzoru:~~x^{n} \cdot x^{m} =x^{n+m} \\\\Iloczyn~~licz 2,3~~i~~6000~~zapisany ~~w~~postaci~~notacji~~wykladniczej~~wynosi:~~1,38\cdot 10^{4}\\\\Odp:~~~~P[/tex]
[tex]zad.b\\\\1,2\div 600=\dfrac{12}{10} \cdot \dfrac{1}{600} =\dfrac{12}{6000}=\dfrac{12}{6\cdot 1000}=\dfrac{2}{10^{3} }=2\cdot 10^{-3}[/tex]
[tex]2\cdot 10^{-3} ~~tyle ~~wynosi~~iloraz~~liczb~~1,2~~i~~600~~zapisany~~w~~postaci~~notacji~~wykladniczej[/tex]
[tex]\\Odp:~~P[/tex]