Odpowiedź :
Odpowiedź:
a)
a - przyprostokątna = 7,5
b - przyprostokątna = 4
c - przeciwprostokątna = √(a² + b²) = √(7,5² +4²) = √(56,25 + 16) =
= √(72,25) = 8,5 [j]
[j] - znaczy właściwa jednostka
sinα = a/c = 7,5 : 8,5 = 75/10 * 10/85 = 75/85 = 15/17
cosα = b/c = 4 : 8,5 = 4 : 85/10 = 4 * 10/85 = 40/85 = 8/17
tgα = a/b = 7,5 : 4 = 75/10 * 1/4 = 75/40 = 15/8 = 1 7/8
b)
a - przyprostokątna
3a - przyprostokątna
c - przeciwprostokątna = √[a² + (3a)²] = √(a² + 9a²) =√(10a²) = a√10
sinα =a/c = a : a√10 = 1/√10 = √10/10
cosα = 3a : c = 3a : a√10 = 3/√10 = 3√10/10
tgα = a : 3a = 1/3
a)
[tex]a = 7,5\\b = 4\\c = ?\\\\a^{2}+b^{2} = c^{2}\\\\7,5^{2}+4^{2} = c^{2}\\\\56,25+16 = c^{2}\\\\c^{2} = 72,25\\\\c = \sqrt{72,25}\\\\x = 8,5\\\\\\sin\alpha = \frac{a}{c} = \frac{7,5}{8,5} = 0,882\\\\cos\alpha = \frac{b}{c} = \frac{4}{8,5} = 0,470\\\\tg\alpha = 1,875[/tex]
b)
[tex]a = a\\b = 3a\\c = ?\\\\a^{2} + b^{2} = c^{2}\\\\a^{2}+(3a)^{2} = c^{2}\\\\a^{2}+9a^{2} = c^{2}\\\\c^{2} = 10a^{2}\\\\c = \sqrt{10a^{2}}\\\\c = a\sqrt{10}\\\\\\sin\alpha = \frac{a}{c} = \frac{a}{c} = \frac{a}{a\sqrt{10}} =\frac{1}{\sqrt{10}}\cdot\frac{\sqrt{10}}{\sqrt{10}} = \frac{\sqrt{10}}{10}\\\\cos\alpha = \frac{b}{c} = \frac{3a}{a\sqrt{10}} = \frac{3}{\sqrt{10}}\cdot\frac{\sqrt{10}}{\sqrt{10}} = \frac{3\sqrt{10}}{10}\\\\tg\alpha = \frac{a}{b} = \frac{a}{3a} = \frac{1}{3}[/tex]