oblicz długość boku kwadratu którego przekatna ma długość s a) d=6 b) d= √3 c) d=7√2​



Odpowiedź :

Jeśli [tex]a[/tex] to bok kwadratu, to przekątna wynosi: [tex]d=a\sqrt{2}[/tex].

Stąd: [tex]a=\frac{d}{\sqrt{2} }[/tex]

Przykład 1

* jeśli [tex]d=6[/tex] to [tex]a=\frac{6}{\sqrt{2} } \cdot\frac{\sqrt{2} }{\sqrt{2} } =\frac{6\sqrt{2} }{2}=3\sqrt{2}[/tex]

Przykład 2

* jeśli [tex]d=\sqrt{3}[/tex] to [tex]a=\frac{\sqrt{3} }{\sqrt{2} } \cdot\frac{\sqrt{2} }{\sqrt{2} } =\frac{\sqrt{6} }{2}[/tex]

Przykład 3

* jeśli [tex]d=7\sqrt{2}[/tex] to [tex]a=\frac{7\sqrt{2} }{\sqrt{2} } =7[/tex]

Magda

Odpowiedź:

Wzór na przekątną kwadratu

[tex]d=a\sqrt{2}\\\\\\a)\ \ d=6\\\\d=a\sqrt{2}\\\\6=a\sqrt{2}\\\\a\sqrt{2}=6\ \ |:\sqrt{2}\\\\a=\frac{6}{\sqrt{2}}=\frac{6}{\sqrt{2}}\cdot\frac{\sqrt{2}}{\sqrt{2}}=\frac{\not6^3\sqrt{2}}{\not2_{1}}=3\sqrt{2}\\\\\\b)\ \ d=\sqrt{3}\\\\d=a\sqrt{2}\\\\\sqrt{3}=a\sqrt{2}\\\\a\sqrt{2}=\sqrt{3}\ \ |:\sqrt{2}\\\\a=\frac{\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{3}}{\sqrt{2}}\cdot\frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{6}}{2}\\\\\\c)\ \ d=7\sqrt{2}\\\\d=a\sqrt{2}\\\\7\sqrt{2}=a\sqrt{2}\ \ |:\sqrt{2}\\\\7=a\\\\a=7[/tex]