Wbazarko
Rozwiązane

rozwiąż równanie dwukawadratowe



Rozwiąż Równanie Dwukawadratowe class=

Odpowiedź :

Odpowiedź:

1)

x⁴ - 5x² + 6 = 0

za x² wstawiam z

z² - 5z + 6 = 0

a = 1 , b = - 5 , c = 6

Δ = b² - 4ac = (- 5)² - 4  * 1 * 6 = 25 - 24 = 1

√Δ = √1 = 1

z₁ = ( - b  - √Δ)/2a = (5 - 1)/2 = 4/2 = 2

z₂ = ( - b + √Δ)/2a = (5 + 1)/2 = 6/2  = 3

x₁² = 2

x₂² = 3

(x₁ - √2)(x₁  + √2) = 0

x₁ - √2 = 0 ∨ x₁ + √2 = 0

x₁ = √2 ∨ x₁ = - √2

(x₂² - √3)(x₂² + √3) = 0

x₂ = √3 ∨ x₂ = - √3

Mamy 4 rozwiązania

x = √2 ∨ x = - √2 ∨ x = √3 ∨ x = - √3

2)

9x⁴ = 12x² - 4

9x⁴ - 12x² + 4 = 0

za x wstawiam z

9x² - 12z + 4 = 0

a = 9 , b = - 12 , c = 4

Δ = b² - 4ac = (- 12)² - 4 * 9 * 4  = 144 - 144 = 0

z₁ = z₂ = - b/2a = 12/18 = 2/3

x₁² = 2/3

[x₁ - √(2/3)][(x₁ + √(2/3)] = 0

x₁ = √(2/3) ∨ x₁ = - √(2/3)

√(2/3) = √2/√3 = (√2 * √3)/3 = √6/3

x₁  = √6/3 ∨ x₁ = - √6/3

Mamy 2 rozwiązania

x = √6/3 ∨ x = - √6/3