Odpowiedź :
[tex]a) \\x^2+8x-9=0\\\Delta=8^2-4*1*(-9)\\\Delta=64+36\\\Delta=100\\\sqrt{\Delta} = 10\\x_1=\frac{-8-10}{2}=\frac{-18}2=-9\\x_2=\frac{-8+10}2=\frac{2}2=1[/tex]
[tex]b) \\2x^2-9x=35 /-35\\2x^2-9x-35=0\\\Delta=(-9)^2-4*2*(-35)\\\Delta=81+280\\\Delta=361\\\sqrt{\Delta}=19\\x_1=\frac{9-19}{4}=\frac{-10}4=-\frac52=-2,5\\x_2=\frac{9+19}4=\frac{28}4=7[/tex]
[tex]c) \\15x^2+7x=0\\\Delta=7^2-4*15*0\\\Delta=49\\\sqrt{\Delta}=7\\x_1=\frac{-7-7}{30}=\frac{-14}{30}=-\frac{7}{15}\\x_2=\frac{-7+7}{30}=\frac0{30}=0[/tex]
[tex]d)\\4x^2-9=0\\\Delta=0^2-4*4*(-9)\\\Delta=0+144\\\Delta=144\\\sqrt{\Delta}=12\\x_1=\frac{0-12}{8}=-\frac{12}8=-\frac{6}4=-\frac{3}2=-1,5\\x_2=\frac{0+12}8=\frac{12}8=\frac32=1,5\\\\\text{Drugi sposob rozwiazania: }\\\\4x^2-9=0 /+9\\4x^2=9 /:4\\x^2=\frac94\\x=\sqrt{\frac94} = \frac32 \text{ lub } -\frac32[/tex]
Cześć!
a)
[tex]x^2+8x-9=0\\\\a=1, \ b=8, \ c=-9\\\\\Delta=8^2-4\cdot1\cdot(-9)=64+36=100\\\\\sqrt{\Delta}=\sqrt{100}=10\\\\x_1=\frac{-8-10}{2\cdot1}=\frac{-18}{2}=-9\\\\x_2=\frac{-8+10}{2\cdot1}=\frac{2}{2}=1[/tex]
b)
[tex]2x^2-9x=35\\\\2x^2-9x-35=0\\\\a=2, \ b=-9, \ c=-35\\\\\Delta=(-9)^2-4\cdot2\cdot(-35)=81+280=361\\\\\sqrt{\Delta}=\sqrt{361}=19\\\\x_1=\frac{-(-9)-19}{2\cdot2}=\frac{9-19}{4}=\frac{-10}{4}=-2,5\\\\x_2=\frac{-(-9)+19}{2\cdot2}=\frac{9+19}{4}=\frac{28}{4}=7[/tex]
c)
[tex]15x^2+7x=0\\\\15x(x+\frac{7}{15})=0\\\\15x=0 \ \ \ \vee \ \ \ x+\frac{7}{15}=0\\\\x_1=0 \ \ \ \vee \ \ \ x_2=-\frac{7}{15}[/tex]
d)
[tex]4x^2-9=0\\\\(2x)^2-3^2=0\\\\(2x+3)(2x-3)=0\\\\2x+3=0 \ \ \ \vee \ \ \ 2x-3=0\\\\2x=-3 \ \ \ \vee \ \ \ 2x=3\\\\x_1=-1,5 \ \ \ \vee \ \ \ x_2=1,5[/tex]
Wykorzystane wzory
[tex]\Delta=b^2-4ac\\\\x_1=\frac{-b-\sqrt{\Delta}}{2a} \ oraz \ x_2=\frac{-b+\sqrt{\Delta}}{2a}\\\\(a+b)(a-b)=a^2-b^2[/tex]