Zapisz w najprostszej postaci:
[tex]3 \sqrt{11 - \frac{ \sqrt{11} }{3} }[/tex]
[tex] \frac{ \sqrt{2} }{5} + \frac{ \sqrt{2} }{10} [/tex]
[tex]5 \sqrt{13} \times ( - 0.4)[/tex]
[tex]1.2 \sqrt{10} \times 2 \sqrt{10} [/tex]
[tex] \frac{5 \sqrt{7 } - 10 \sqrt{3} }{5} [/tex]
[tex] \frac{5}{6} \sqrt{3} \times \frac{3}{2} [/tex]
Potrzebuje na szybko. Daje naj.



Odpowiedź :

ZbiorJ

[tex]a)~~3\sqrt{11-\dfrac{\sqrt{11} }{3} } =3\sqrt{\dfrac{33-\sqrt{11} }{3} } =\sqrt{3^{2} \cdot (\dfrac{33-\sqrt{11} }{3} )} =\sqrt{9 \cdot (\dfrac{33-\sqrt{11} }{3} )} =\sqrt{3\cdot (33-\sqrt{11} )} =\sqrt{99-3\sqrt{11} }[/tex]

[tex]b)~~\dfrac{\sqrt{2} }{5} +\dfrac{\sqrt{2} }{10}=\dfrac{2\sqrt{2} }{10}+\dfrac{\sqrt{2} }{10}=\dfrac{2\sqrt{2}+\sqrt{2} }{10}=\dfrac{3\sqrt{2} }{10}[/tex]

[tex]c)~~5\sqrt{13} \cdot (-0,4)=5\sqrt{13} \cdot (-\dfrac{4}{10} )= 5\sqrt{13} \cdot (-\dfrac{2}{5} ) =-2\sqrt{13}[/tex]

[tex]d)~~1,2\sqrt{10} \cdot 2\sqrt{10} =\dfrac{12}{10} \cdot 2\sqrt{10\cdot 10} =\dfrac{24}{10}\cdot \sqrt{10^{2} } =\dfrac{24}{10}\cdot 10=24\\[/tex]

[tex]e)~~\dfrac{5\sqrt{7} -10\sqrt{3} }{5} =\dfrac{5\cdot (\sqrt{7} -2\sqrt{3}) }{5} =\sqrt{7} -2\sqrt{3}[/tex]

[tex]f)~~\dfrac{5}{6} \sqrt{3} \cdot \dfrac{3}{2} =\dfrac{5}{6} \cdot \dfrac{3}{2} \sqrt{3} =\dfrac{5}{4} \sqrt{3} =\dfrac{5\sqrt{3} }{4}[/tex]