Odpowiedź :
Odpowiedź:
= [tex]\frac{5*27x^{15}y^{6}}{27x^{13}y^{5}}[/tex]
= [tex]\frac{5*27x^{2}y}{27}[/tex]
= [tex]\frac{5* 27 * 4 * 444}{27}[/tex]
= 20 * 444
= 8880
[tex]\frac{ 5x^3(3x^4y^2)^3 }{27(x^5y^2)^2 x^3 y } =\frac{ 5x^3(3^3x^{12}y^6 )}{27*x^{10} y^4 x^3 y } = \frac{ 5x^3*27x^{12}y^6 }{27*x^{10} y^4 x^3 y } = \frac{ 135 x^{3+12}y^6 }{27*x^{10+3} y^{4+1} } = \frac{ 135 x^{15}y^6 }{27 x^{13} y^{5} } =\\\\= \frac{135}{27}x^{15-13}y^{6-5}=5x^2y\\\\x=2,\ \ \ y=444\\\\5x^2y=5*2^2*444=5*4*444=20*444=8880\\\\odp.\ Wartosc\ wyrazenia\ wynosi\ \boxed{8\ 880}[/tex]