[tex]F_{d} = \frac{mv^{2}}{r}[/tex]
[tex]m = 30 \ kg\\v = 1,256\frac{m}{s}\\r = 1,2 \ m[/tex]
[tex]v^{2} = (1,256\frac{m}{s})^{2} = 1,256\frac{m}{s} \cdot 1,256\frac{m}{s} = 1,577536\frac{m^{2}}{s^{2}}[/tex]
[tex]F_{d} = \frac{3 \ kg\cdot(1,256\frac{m}{s})^{2}}{1,2 ' m} = \frac{30 \ kg\cdot1,577536\frac{m^{2}}{s^{2}}}{1,2 \ m}=39,4 \ N \approx 39 \ N[/tex]