Odpowiedź:
[tex]a_1\\l^2=2^2+4^2\\l^2=4+16\\l^2=20\\l=2\sqrt5\\a_2\\l^2=(3\sqrt5)^2-(2\sqrt5)^2\\l^2=45-20\\l^2=25\\l=5\\a_3\\m^2=7^2-(4\sqrt3)^2\\m^2=49-48\\m^2=1\\m=1\\b_1\\x^2=(3^2+6^2)-2^2\\x^2=(9+36)-4\\x^2=45-4\\x^2=41\\x=\sqrt{41}\\b_2\\y^2=(2\sqrt3)^2+(2^2+3^2)\\y^2=12+4+9\\y^2=25\\y=5\\b_3\\Z^2=(2\sqrt5)^2-((\sqrt7)^2+3^2)\\Z^2=20-(7+9)\\Z^2=20-16\\Z^2=4\\Z=2[/tex]
Szczegółowe wyjaśnienie: