Rozwiązane

cosinus kata ostrego alfa jest rowny 0,25. sin alfa ma wartosc



Odpowiedź :

Cześć!

Korzystam z jedynki trygonometrycznej

[tex]sin^2\alpha+cos^2\alpha=1[/tex]

Obliczenia

[tex]cos\alpha=0,25=\frac{1}{4}\\\\sin^2\alpha+(\frac{1}{4})^2=1\\\\sin^2\alpha+\frac{1}{16}=1 \ \ /-\frac{1}{16}\\\\sin^2\alpha=\frac{15}{16}\\\\sin\alpha=\frac{\sqrt{15}}{\sqrt{16}}\\\\\huge\boxed{sin\alpha=\frac{\sqrt{15}}{4}}[/tex]

Maris3

Odpowiedź:

0,25=[tex] \frac{1}{4} [/tex]

[tex] \sin ^{2} \alpha + \cos^{2} \alpha = 1[/tex]

[tex] \sin^{2} \alpha + ( \frac{1}{4} ) ^{2} = 1 \\ \sin^{2} \alpha = 1- \frac{1}{16} \\ \sin ^{2} \alpha = \frac{15}{16} \: \: \: \: \: | \sqrt{} \\ \sin\alpha = \sqrt{ \frac{15}{16} } \\ \sin \alpha = \frac{ \sqrt{15} }{4} [/tex]