Odpowiedź :
Cześć!
Wzór funkcji kwadratowej w postaci kanonicznej
[tex]y=a(x-p)^2+q\\\\p=\frac{-b}{2a}\\\\q=\frac{-\Delta}{4a} \ (\Delta=b^2-4ac)[/tex]
Obliczenia
[tex]y=(x+3)(x+5)\\\\y=x\cdot x+x\cdot 5+x\cdot3+3\cdot5\\\\y=x^2+5x+3x+15\\\\y=x^2+8x+15\\\\a=1, \ b=8, \ c=15\\\\\Delta=8^2-4\cdot1\cdot15=64-60=4\\\\p=\frac{-8}{2\cdot1}=\frac{-8}{2}=-4\\\\q=\frac{-4}{4\cdot1}=\frac{-4}{4}=-1\\\\y=(x-(-4))^2+(-1)\\\\\huge\boxed{y=(x+4)^2-1}[/tex]
[tex]y = (x+3) (x+5) \\y=x^2+5x+3x+15\\y=x^2+8x+16-1\\y=(x+4)^2-1[/tex]