Odpowiedź:
[tex](7-4a)^2=7^2-2\cdot7\cdot4a+(4a)^2=49-56a+16a^2\\\\(5x+1)^2=(5x)^2+2\cdot5x\cdot1+1^2=25x^2+10x+1\\\\(\sqrt{3}-2x)^2=(\sqrt{3})^2-2\cdot\sqrt{3}\cdot2x+(2x)^2=3-4\sqrt{3}x+4x^2\\\\(4x+6)^2=(4x)^2+2\cdot4x\cdot6+6^2=16x^2+48x+36\\\\(5+y)^3=5^3+3\cdot5^2\cdot y+3\cdot5y^2+y^3=125+3\cdot25y+15y^2+y^3=125+75y+15y^2+y^3[/tex]
[tex](\sqrt{3}-2x)^3=(\sqrt{3})^3-3\cdot(\sqrt{3})^2\cdot2x+3\sqrt{3}\cdot(2x)^2-(2x)^3=\\\\=\sqrt{27}-3\cdot3\cdot2x+3\sqrt{3}\cdot4x^2-8x^3=\sqrt{9\cdot3}-18x+12\sqrt{3}x^{2}-8x^3=\\\\=3\sqrt{3}-18x+12\sqrt{3}x^2-8x^3\\\\(\sqrt{2}+x)(\sqrt{2}-x)=(\sqrt{2})^2-x^2=2-x^2[/tex]
[tex]Zastosowane\ \ wzory\\\\(a-b)^2=a^2-2ab+b^2\\\\(a+b)^2=a^2+2ab+b^2\\\\(a+b)^3=a^3+3a^2b+3ab^2+b^3\\\\(a-b)^3=a^3-3a^2b+3ab^2-b^3\\\\(a-b)(a+b)=a^2-b^2[/tex]