Guenom
Rozwiązane

Proszę o odpowiedź na krótkie zadanie w załączniku. (zagadnienie pierwiastki, poziom klasa 7)



Proszę O Odpowiedź Na Krótkie Zadanie W Załączniku Zagadnienie Pierwiastki Poziom Klasa 7 class=

Odpowiedź :

Odpowiedź:

a) [tex]\frac{\sqrt{16*2}+\sqrt{2} }{\sqrt{2} } =\frac{4\sqrt{2}+\sqrt{2} }{\sqrt{2} }=\frac{5\sqrt{2} }{\sqrt{2} } =5[/tex]

b) [tex]\frac{\sqrt{4*2} +\sqrt{25*2} }{\sqrt{2} } =\frac{2\sqrt{2} +5\sqrt{2} }{\sqrt{2} } =\frac{7\sqrt{2} }{\sqrt{2} } =7[/tex]

c) [tex]\frac{\sqrt{9*3}-\sqrt{4*3} }{\sqrt{3} } =\frac{3\sqrt{3}-2\sqrt{3} }{\sqrt{3} } =\frac{\sqrt{3}}{\sqrt{3}} =1[/tex]

d) [tex]\frac{2\sqrt{25*2}+\sqrt{36*2} }{2\sqrt{2} } =\frac{2*5\sqrt{2}+6\sqrt{2} }{2\sqrt{2} } =\frac{10\sqrt{2}+6\sqrt{2} }{2\sqrt{2} } =\frac{16\sqrt{2} }{2\sqrt{2} } =8[/tex]

Szczegółowe wyjaśnienie:

ZbiorJ

[tex]zad.52\\\\a)~~ \dfrac{\sqrt{32} +\sqrt{2} }{\sqrt{2} } =\dfrac{\sqrt{16\cdot 2} +\sqrt{2} }{\sqrt{2} } =\dfrac{\sqrt{2}\cdot \sqrt{16} +\sqrt{2} }{\sqrt{2} } =\dfrac{\sqrt{2} (\sqrt{4^{2} } +1) }{\sqrt{2} } =4+1=5\\\\b)~~\dfrac{\sqrt{8} +\sqrt{50} }{\sqrt{2} } =\sqrt{\dfrac{8}{2} } +\sqrt{\dfrac{50}{2} } =\sqrt{4} +\sqrt{25} =\sqrt{2^{2} } +\sqrt{5^{2} } =2+5=7[/tex]

[tex]c)~~\dfrac{\sqrt{27} -\sqrt{12} }{\sqrt{3} } =\dfrac{\sqrt{3\cdot 9} -\sqrt{3\cdot 4} }{\sqrt{3} } =\dfrac{\sqrt{3} \cdot \sqrt{9} -\sqrt{3} \cdot \sqrt{4} }{\sqrt{3} } =\dfrac{\sqrt{3} (\sqrt{9} -\sqrt{4}) }{\sqrt{3} } =\sqrt{3^{2} } -\sqrt{2^{2} } =3-2=1[/tex]

[tex]d)~~\dfrac{2\sqrt{50} +\sqrt{72} }{2\sqrt{2} } =\dfrac{2\sqrt{50} }{2\sqrt{2} } +\dfrac{\sqrt{72} }{2\sqrt{2} } =\sqrt{\dfrac{50}{2} } +\dfrac{1}{2} \cdot \sqrt{\dfrac{72}{2} } =\sqrt{25} +\dfrac{1}{2} \cdot \sqrt{36} =\sqrt{5^{2} } +\dfrac{1}{2} \cdot \sqrt{6^{2} }=5+\dfrac{1}{2} \cdot 6 =5+3=8[/tex]