Odpowiedź :
[tex]4. \ (2^{-2})^{-2} = 2^{-2\cdot(-2)} = 2^{4}=16\\\\5. \ (3^{6}\cdot3^{-3})^{2}:3^{3} = (3^{6-3})^{2}:3^{3} = (3^{3})^{2}:3^{3} = 3^{3\cdot2}:3^{3} = 3^{6}:3^{3} = 3^{6-3} = 3^{3}\\\\6. \ \sqrt{9}+\sqrt{16}+\sqrt{25} = \sqrt{3^{2}}+\sqrt{4^{2}}+\sqrt{5^{2}} = 3+4+5 = 12\\\\7. \ \sqrt{49\cdot0,49} = \sqrt{49}\cdot\sqrt{0,49} = \sqrt{7^{2}}\cdot\sqrt{0,7^{2}}=7\cdot 0,7 = 4,9\\\\8. \ \sqrt{\frac{169}{225}} = \frac{\sqrt{169}}{\sqrt{225}} = \frac{\sqrt{13^{2}}}{\sqrt{15^{2}}} = \frac{13}{15}[/tex]
[tex]9. \ \sqrt[3]{125}-\sqrt[3]{8} = \sqrt[3]{5^{3}}-\sqrt[3]{2^{3}} = 5-2 = 3\\\\10. \ \sqrt[3]{0,027}+\sqrt[3]{0,008} = \sqrt[3]{0,3^{3}}+\sqrt[3]{0,2^{3}} = 0,3+0,2 = 0,5\\\\11. \ \sqrt[3]{125\cdot216} = \sqrt[3]{125}\cdot\sqrt[3]{216} = \sqrt[3]{5^{3}}\cdot\sqrt[3]{6^{3}} = 5\cdot6 = 30\\\\12. \ \sqrt[3]{\frac{216}{125}}=\frac{\sqrt[3]{216}}{\sqrt[3]{125}} = \frac{\sqrt[3]{6^{3}}}{\sqrt[3]{5^{3}}} = \frac{6}{5} = 1\frac{1}{5}[/tex]