Odpowiedź :
Odpowiedź i szczegółowe wyjaśnienie:
[tex]4\sqrt3-\sqrt{12}=4\sqrt3-\sqrt{4\cdot3}=4\sqrt3-2\sqrt3=2\sqrt3\\\\2\sqrt{20}+3\sqrt5-\sqrt{80}=2\sqrt{4\cdot5}+3\sqrt5-\sqrt{16\cdot5}=2\cdot2\sqrt5+3\sqrt5-4\sqrt5=\\\\=4\sqrt5+3\sqrt5-4\sqrt5=3\sqrt5\\\\3\sqrt8+\sqrt{32}-2\sqrt{18}=3\sqrt{4\cdot2}+\sqrt{16\cdot2}-2\sqrt{9\cdot2}=3\cdot2\sqrt2+4\sqrt2-2\cdot3\sqrt2=\\\\=6\sqrt2+4\sqrt2-6\sqrt2=4\sqrt2[/tex]
[tex]9-21\sqrt{81}+\sqrt144}=9-21\cdot9-12=-3-189=-192\\\\\\\\\dfrac{3\sqrt5+\sqrt{45}}{2\sqrt5}=\dfrac{3\sqrt5+\sqrt{9\cdot5}}{2\sqrt5}=\dfrac{3\sqrt5+3\sqrt5}{2\sqrt5}=\dfrac{6\sqrt5}{2\sqrt5}=\dfrac62=3[/tex]
Odpowiedź:
[tex]4\sqrt{3}-\sqrt{12}=2\sqrt{3}[/tex]
[tex]2\sqrt{20}+3\sqrt{5}-\sqrt{80}=3\sqrt{5}[/tex]
[tex]3\sqrt{8}+\sqrt{32}-2\sqrt{18}=4\sqrt{2}[/tex]
[tex]9-21\sqrt{81}+\sqrt{144}=-168[/tex]
[tex]\frac{3\sqrt{5} +\sqrt{45} }{2\sqrt{5} }=3[/tex]
Szczegółowe wyjaśnienie:
[tex]4\sqrt{3}-\sqrt{12}=\4\sqrt{3}-\sqrt{4\cdot 3}=4\sqrt{3}-2\sqrt{3}=2\sqrt{3}[/tex]
[tex]2\sqrt{20}+3\sqrt{5}-\sqrt{80}=\\\\=2\sqrt{4\cdot 5}+3\sqrt{5}-\sqrt{16\cdot 5}=\\\\=2\cdot 2\sqrt{5}+3\sqrt{5}-4\sqrt{5}=\\\\=4\sqrt{5}+3\sqrt{5}-4\sqrt{5}=\\\\=3\sqrt{5}[/tex]
[tex]3\sqrt{8}+\sqrt{32}-2\sqrt{18}=\\\\=3\sqrt{4\cdot 2}+\sqrt{16\cdot 2}-2\sqrt{9\cdot 2}=\\\\=3\cdot 2\sqrt{2}+4\sqrt{2}-2\cdot 3\sqrt{2}=\\\\=6\sqrt{2}+4\sqrt{2}-6\sqrt{2}=\\\\=4\sqrt{2}[/tex]
[tex]9-21\sqrt{81}+\sqrt{144}=9-21\cdot9+12=9-189+12=-168[/tex]
[tex]\frac{3\sqrt{5} +\sqrt{45} }{2\sqrt{5} }=\frac{3\sqrt{5}+\sqrt{9\cdot 5}}{2\sqrt{5}}= \frac{3\sqrt{5}+3\sqrt{5}}{2\sqrt{5}}=\frac{6\sqrt{5}}{2\sqrt{5}}=3[/tex]