Odpowiedź :
[tex]u(x)=x^{5} -\sqrt{2} \cdot x^{4} +\sqrt{3} \cdot x^{3} -\sqrt{6} \cdot ^{2} \\\\u(x)=x^{5} -\sqrt{2}\cdot x^{4} +\sqrt{3} \cdot x^{3} -\sqrt{3\cdot 2} \cdot x^{2} \\\\u(x)=x^{5} -\sqrt{2}\cdot x^{4} +\sqrt{3} \cdot x^{3} -\sqrt{3} \cdot \sqrt{2} \cdot x^{2} \\\\u(x)=x^{2} \cdot ( x^{3} -\sqrt{2}\cdot x^{2} +\sqrt{3} \cdot x -\sqrt{3} \cdot \sqrt{2} )\\\\u(x)=x^{2} \cdot [ x^{2} \cdot (x-\sqrt{2} )+\sqrt{3} \cdot (x-\sqrt{2} )]\\\\u(x)=x^{2} \cdot (x-\sqrt{2} ) \cdot (x^{2} +\sqrt{3} )\\\\[/tex]
[tex]korzystam ~~ze~~wzoru:~~\sqrt{a\cdot b} =\sqrt{a} \cdot \sqrt{b}[/tex]