[tex]e)~~\sqrt[3]{-0,064} =\sqrt[3]{-\dfrac{64}{1000} } =\sqrt[3]{-\dfrac{4^{3} }{10^{3} } } =\sqrt[3]{(-\dfrac{4}{10} )^{3} } =-\dfrac{4}{10} =-0,4\\\\d)~~\sqrt[3]{\dfrac{1}{27} } =\sqrt[3]{\dfrac{1^{3} }{3^{3} } } =\sqrt[3]{(\dfrac{1}{3} )^{3} } =\dfrac{1}{3}\\\\f)~~\sqrt[3]{3\dfrac{3}{8} } =\sqrt[3]{\dfrac{27}{8} }=\sqrt[3]{\dfrac{3^{3} }{2^{3} } } =\sqrt[3]{(\dfrac{3}{2} )^{3} } =\dfrac{3}{2}=1\dfrac{1}{2}=1,5\\\\[/tex]
[tex]g)\sqrt[3]{-0,125} =\sqrt[3]{-\dfrac{125}{1000} } =\sqrt[3]{-\dfrac{5^{3} }{10^{3} } } =\sqrt[3]{(-\dfrac{5}{10} )^{3} } =-\dfrac{5}{10} =-\dfrac{1}{2} =-0,5\\\\h)~~\sqrt[3]{1\dfrac{61}{64} } =\sqrt[3]{\dfrac{125}{64} } =\sqrt[3]{\dfrac{5^{3} }{4^{3} } } =\sqrt[3]{(\dfrac{5}{4} )^{3} } =\dfrac{5}{4}=1\dfrac{1}{4}=1,25[/tex]
korzystam ze wzoru:
[tex]\sqrt[n]{x^{n} } =(x^{n} )^{\frac{1}{n} } =x^{1} =x[/tex]