Odpowiedź i szczegółowe wyjaśnienie:
Co do zadania z ułamkiem i niewymiernością. Jej nie trzeba tutaj usuwać :)
[tex]\dfrac{\sqrt{18}}{15\sqrt2}=\dfrac{1}{15}\cdot\dfrac{\sqrt{18}}{\sqrt2}=\dfrac1{15}\cdot\sqrt{9}=\dfrac1{15}\cdot 3=\dfrac{3}{15}=\dfrac15[/tex]
Ale jak trzeba usunąć nie wymierność, to usuwamy :)
[tex]\dfrac{\sqrt{18}}{15\sqrt2}=\dfrac{\sqrt{18}}{15\sqrt2}\cdot\dfrac{\sqrt{2}}{\sqrt2}=\dfrac{\sqrt{36}}{15\cdot2}=\dfrac{6}{30}=\dfrac15[/tex]
Włączenie liczby pod pierwiastek:
[tex]4\sqrt[3]5=\sqrt[3]{4^3\cdot5}=\sqrt[3]{64\cdot5}=\sqrt[3]{320}\\\\2\sqrt[3]{3\dfrac34}=\sqrt[3]{2^3\cdot3\dfrac34}=\sqrt[3]{8\cdot\dfrac{15}{4}}=\sqrt[3]{30}\\\\\\\dfrac23\sqrt[3]{135}=\sqrt[3]{(\dfrac23)^3\cdot135}=\sqrt[3]{\dfrac{8}{27}\cdot135}=\sqrt[3]{40}[/tex]