Odpowiedź :
Odpowiedź i szczegółowe wyjaśnienie:
Mordko moja :) Pomogę, a co!
3 maj :)
[tex]\dfrac{\sqrt[3]{-54}\cdot\sqrt[3]{250}}{\sqrt[5]4}=\dfrac{\sqrt[3]{-27\cdot2}\cdot\sqrt[3]{125\cdot2}}{\sqrt[5]4}=\dfrac{\sqrt[3]{(-3)^3\cdot2}\cdot\sqrt[3]{5^3\cdot2}}{\sqrt[5]4}=\\\\\\=\dfrac{-3\sqrt[3]2\cdot5\sqrt[3]2}{\sqrt[5]4}=\dfrac{-15\sqrt[3]{4}}{\sqrt[5]4}=\dfrac{-15\cdot4^\frac13}{4^\frac15}=-15\cdot4^{\frac13-\frac15}=\\\\=-15\cdot4^{\frac{5}{15}-\frac{3}{15}}=-15\cdot4^{\frac{2}{15}}=-15\cdot(2^2)^\frac{2}{15}=-15\cdot2^{\frac{4}{15}}[/tex]
[tex]\sqrt[3]{37\dfrac{1}{27}}+\sqrt[3]{-\dfrac{115}{216}}=\sqrt[3]{\dfrac{1000}{27}}+\sqrt{-\dfrac{115}{216}}=\sqrt[3]{\dfrac{10^3}{3^3}}+\sqrt[3]{-\dfrac{115}{6^3}}=\\\\\\=\dfrac{10}{3}+\dfrac{\sqrt[3]{-115}}{6}[/tex]
Odpowiedź:
3√(-54 * 250)/5√4 = [-3 * (3√2) * 5 (3√2)]/5√4 = [-3 * 2^1/3 * 5(3√2)]/4^1/5 =
[-3 * 2^1/3 * 5(3√2)]/2^2/5
Dzielę:
[2^1/5 / 2^2/5 ]: 1/2^1/15
I dalej:
= [-3 * 5 (3√2)]/2^1/15 = [-3 * 5 * 2^1/5] / 2^1/15 = -3 * 5 * 2^4/15 = -15 * [tex]2^{4/15}[/tex]