Odpowiedź :
Odpowiedź:
a)
f(x) = - 2x² + x + 1
a = - 2 , b = 1 , c = 1
Δ = b² - 4ac = 1² - 4 * (- 2) * 1 = 1 + 8 = 9
√Δ = √9 = 3
x₁ = ( - b - √Δ)/2a = ( - 1 - 3)/(- 4) = - 4/(- 4) = 4/4 = 1
x₂ = ( - b + √Δ)/2a = (- 1 + 3)/(- 4) =2/(- 4) = - 2/4 = - 1/2
Postać iloczynowa
f(x) = a(x - x₁)(x - x₂) = - 2(x - 1)(x + 1/2)
b)
g(x) = 2x² - 4x + 2
a = 2 , b = - 4 , c = 2
Δ = b² - 4ac = (- 4)² - 4 * 2 * 2 = 16 - 16 = 0
x₁ = x₂ = - b/2a = 4/4 = 1
Postać iloczynowa
g(x) = a(x - x₁)(x - x₂) = 2(x - 1)(x - 1) = 2(x - 1)²
Odpowiedź:
[tex]a)\\y=-2x^2+x+1\\\Delta=1^2-4*(-2)*1=9\\\sqrt\Delta=3\\x_1=\frac{-1+3}{2*(-2)} =-\frac{2}{4} =-\frac{1}{2}\\ x_2=\frac{-1-3}{2*(-2)} =x_1=\frac{-4}{-4)} =1\\y=-2(x-1)(x+\frac{1}{2}) \\\\b)\\y=2x^2-4x+2\\y=2x^2-2x-2x+2\\y=2x(x-1)-2(x-1)\\y=(2x-2)(x-1)\\[/tex]
Szczegółowe wyjaśnienie: