[tex]cw.3\\\\a) ~~u(x,y)\cdot w(x,y)=(xy-2x^{2} )\cdot (2x^{2} -3y^{2}+x)=2x^{3} y -3xy^{3} +x^{2} y-4x^{4} +6x^{2} y^{2} -2x^{3}[/tex]
[tex]b)~~u(x,y)\cdot w(x,y)=(3xy^{2} -2x+1)\cdot (x^{2} y+xy-y)=3x^{3} y^{3} +3x^{2} y^{3} -3xy^{3} -2x^{3} y-2x^{2} y+2xy+x^{2} y+xy-y=3x^{3} y^{3}+3x^{2} y^{3} -3xy^{3} -2x^{3} y-x^{2} y+3xy-y[/tex]
[tex]c)~~u(x,y)\cdot w(x,y)=(4x^{2} y+3xy^{2} -2xy)\cdot (x^{2} y^{2} -3x^{2} y+xy)=4x^{4} y^{3} -12x^{4} y^{2} +4x^{3} y^{2} +3x^{3} y^{4} -9x^{3} y^{3} +3x^{2} y^{3} -2x^{3} y^{3} +6x^{3} y^{2} -2x^{2} y^{2} =4x^{4} y^{3} -12x^{4} y^{2} +3x^{3} y^{4}-11x^{3} y^{3} +10x^{3} y^{2} +3x^{2} y^{3} -2x^{2} y^{2}[/tex]
korzystam ze wzoru:
[tex]x^{n} \cdot x^{m} =x^{n+m}[/tex]