1. Wykaż, że liczba 13^2022 + 13^2020 + 13^2018 + 13^2016 + 13^2014 + 13^2012 jest podzielna przez 17.

2. Dany jest trójkąt ABC [załącznik]. Na boku AB tego trójkąta wybrano punkt D, tak że |BD| = 1/5 |AB|, a na boku AC wybrano taki punkt E, że |CE| = 7/8 |AC|. Wykaż, że pole trójkąta ABC jest 10 razy większe od pola trójkąta ADE.



1 Wykaż Że Liczba 132022 132020 132018 132016 132014 132012 Jest Podzielna Przez 17 2 Dany Jest Trójkąt ABC Załącznik Na Boku AB Tego Trójkąta Wybrano Punkt D T class=

Odpowiedź :

ZbiorJ

[tex]zad.1\\\\13^{2022} +13^{2020} +13^{2018} +13^{2016} +13^{2014} +13^{2012} =13^{2012}\cdot 13^{10}+13^{2012}\cdot 13^{8}+13^{2012}\cdot 13^{6}+13^{2012}\cdot 13^{4}+13^{2012}\cdot 13^{2}+13^{2012}=13^{2012}\cdot (13^{10}+13^{8}+13^{6}+13^{4}+13^{2}+1)=13^{2012}\cdot (137858491849+815730721+4826809+28561+169+1=13^{2012}\cdot 138679078110=13^{2012}\cdot 8157592830\cdot 17\\\\13^{2022} +13^{2020} +13^{2018} +13^{2016} +13^{2014} +13^{2012}=17\cdot 13^{2012}\cdot 8157592830~~~~cbdu.[/tex]

[tex]zad.2\\\\\alpha - ~~miare~~kata~~przy~~wierzcholku~~A~~\\\\P\Delta ABC= \dfrac{1}{2} \cdot \mid AB\mid \cdot \mid AC\mid \cdot sin\alpha \\\\P\Delta ADE = \dfrac{1}{2} \cdot \mid AD\mid \cdot \mid AE\mid \cdot sin\alpha \\\\\mid AB\mid = \mid AD\mid + \mid BD\mid ~~ \land ~~\mid BD\mid =\dfrac{1}{5} \mid AB\mid~~\Rightarrow ~~\mid AD\mid =\dfrac{4}{5} \mid AB\mid\\\\\mid AC\mid=\mid AE\mid+ \mid CE\mid ~~\land ~~\mid CE\mid = \dfrac{7}{8} \mid AC\mid~~\Rightarrow ~~\mid AE\mid=\dfrac{1}{8} \mid AC\mid[/tex]

[tex]P\Delta ADE=\dfrac{1}{2} \cdot \dfrac{4}{5} \mid AB\mid \cdot \dfrac{1}{8} \mid AC\mid \cdot sin\alpha \\\\P\Delta ADE=\dfrac{1}{2} \cdot \dfrac{1}{10} \mid AB\mid \cdot \mid AC\mid \cdot sin\alpha ~~\land ~~P\Delta ABC=\dfrac{1}{2} \cdot \mid AB\mid \cdot \mid AC\mid \cdot sin\alpha \\\\P\Delta ADE = \dfrac{1}{10} \cdot P\Delta ABC ~~\Rightarrow ~~P\Delta ABC = 10\cdot P\Delta ADE~~~~cbdu.[/tex]