Odpowiedź :
Szczegółowe wyjaśnienie:
[tex]\dfrac{3^3}{\sqrt9}-\dfrac{3^4}{6}=\dfrac{3^3}{\sqrt{3^2}}-\dfrac{3^4}{2\cdot3}\qquad(1)\\\\\dfrac{4^3}{\sqrt{16}}+\dfrac{4^4}{8}=\dfrac{4^3}{\sqrt{4^2}}+\dfrac{4^4}{2\cdot4}\qquad(2)\\\\\dfrac{5^3}{\sqrt{25}}-\dfrac{5^4}{10}=\dfrac{5^3}{\sqrt{5^2}}-\dfrac{5^4}{2\cdot5}\qquad(3)[/tex]
a)
[tex]\dfrac{6^3}{\sqrt{6^2}}+\dfrac{6^4}{2\cdot6}=\dfrac{6^3}{\sqrt{36}}+\dfrac{6^4}{12}\qquad(4)\\\\\dfrac{7^3}{\sqrt{7^2}}-\dfrac{7^4}{2\cdot7}=\dfrac{7^3}{\sqrt{49}}-\dfrac{7^4}{14}\qquad(5)[/tex]
b)
[tex](1)=\dfrac{27}{3}-\dfrac{81}{6}=9-\dfrac{27}{2}=9-13,5=-4,5\notin\mathbb{C}\\\\(2)=\dfrac{64}{4}+\dfrac{256}{8}=16+32=48\in\mathbb{C}\\\\(3)=\dfrac{125}{5}-\dfrac{625}{10}=25-62,5=-37,5\notin\mathbb{C}\\\\(4)=\dfrac{216}{6}+\dfrac{1296}{12}=36+108=144\in\mathbb{C}\\\\(5)=\dfrac{343}{7}-\dfrac{2401}{14}=49-171,5=-122,5\notin\mathbb{C}[/tex]
c)
[tex]-4,5+(-37,5)+(-122,5)=-164,5[/tex]