Odpowiedź:
[tex]\boxed{a) = 8}\boxed{b)=4}\boxed{c)=7}[/tex]
[tex]\boxed{d)=2}\boxed{e)=4}\boxed{f)=17}[/tex]
Szczegółowe wyjaśnienie:
Obliczenia od a) do c)
[tex]\sqrt{25}-\sqrt[3]{-27}=\sqrt{5^2}-\sqrt[3]{(-3)^3}=5-(-3)=5+3=8\\\\4\sqrt{\frac{1}{16}}+\frac{\sqrt{81}}{3}=4\sqrt{(\frac{1}{4})^2}+\frac{\sqrt{9^2}}{3}=4\cdot\frac{1}{4}+\frac{9}{3}=1+3=4\\\\\sqrt[3]{49\cdot\sqrt{49}}=\sqrt[3]{49\cdot\sqrt{7^2}}=\sqrt[3]{49\cdot7}=\sqrt[3]{7^2\cdot7}=\sqrt[3]{7^{2+1}}=\sqrt[3]{7^3}=7[/tex]
Obliczenia od d) do f)
[tex]\sqrt{2\sqrt{2\sqrt{4}}}=\sqrt{2\sqrt{2\sqrt{2^2}}}=\sqrt{2\sqrt{2\cdot2}}=\sqrt{2\sqrt{2^2}}=\sqrt{2\cdot2}=\sqrt{2^2}=2\\\\\sqrt{64}+\sqrt{36}-\sqrt{64+36}=\sqrt{8^2}+\sqrt{6^2}-\sqrt{100}=8+6-\sqrt{10^2}=14-10=4\\\\\sqrt{900}:\sqrt[3]{27}+\sqrt{49}=\sqrt{30^2}:\sqrt[3]{3^3}+\sqrt{7^2}=30:3+7=10+7=17[/tex]