zadanie 1
u(-3)=-27+12+15 = 0
w(-3) = -27 + 2 * 9 +3 + 6 = 0
u(-3)=w(-3), więc dwumian k(x) = x +3 jest wspólnym dzielnikiem tych wielomianów
zadanie 2
x⁴(x-3) -4x²(x-3) + 4(x-3) : (x-3) = 0
(x-3)(x⁴-4x²+4):(x-3) = 0
x⁴- 4x² + 4 = 0
(x²-2)² = 0
więc x = [tex]\sqrt{2}[/tex] i x = - [tex]\sqrt{2}[/tex]
zadanie 3
u(2) = 16 - 4 + 6 + d = 18 + d
w(x) = 16 + 8 - 8 -d = 16 - d
18 + d = 16 - d
2d = -2
d = -1