[tex]4\cdot (3+x)^{2} -(2x-1)\cdot (2x+1) \leq 13\\ \\ 4\cdot (9+6x+x^{2} )-(4x^{2} -1) \leq 13 \\ korzystam~~ze~~wzorow~~skroconego~~mnozenia:\\ \\ (x+y)^{2} =x^{2} +2xy+y^{2} ~~oraz~~(x+y)\cdot (x-y)= x^{2} -y^{2} \\ \\ 36+24x+4x^{2} -4x^{2} +1 \leq 13\\ \\ 24x+36+1 \leq 13\\ \\ 24x+37 \leq 13\\ \\ 24x\leq 13-37\\ \\ 24\leq -24~~\mid \div 24\\ \\ x \leq -1\\ \\ x\in ( - \infty ,-1>[/tex]