[tex]a_{n} = n^{2}-7n+10\\\\a_{n} < 0\\\\n^{2}-7n+10 < 0\\\\n^{2}-2n-5n+10 < 0\\\\n(n-2) - 5(n-2) < 0\\\\(n-2)(n-5) < 0\\\\n = 2 \ \vee \ n = 5\\\\n \in (2;5) \ \ i \ \ n\in \ N_{+} \ \ \Leftrightarrow \ \ n \in \{3,4\}[/tex]
Odp. Szukane wyrazy tego ciągu to: a₃ i a₄