Odpowiedź :
[tex]f(x)=2x^{2} +4x+c\\ \\ A=(1,2)~~\land~~A\in f(x)\\ \\ 2\cdot 1^{2} +4\cdot 1+c=2\\ \\ 2+4+c=2\\ \\ 6+c=2\\ \\ c=2-6\\ \\ c=-4\\ \\ f(x)=2x^{2} +4x-4\\ \\ a=2~~\Rightarrow ~~a>0~~\Rightarrow ~~ramiona~~paraboli~~skierowane~~do ~~gory\\\\ Obliczam~~wierzcholek~~paraboli:\\ \\ W=(p,q)\\ \\ [/tex]
[tex]p=\dfrac{-b}{2a} ~~\land~~q=\dfrac{-\Delta }{4a} \\ \\ a=2,~~b=4,~~c=-4\\ \\ \Delta =b^{2} -4ac\\ \\ \Delta = 4^{2} -4\cdot 2 \cdot (-4)=16+32=48\\ \\ p=\dfrac{-4}{4} =-1\\ \\ q=\dfrac{-48}{8} =-6\\ \\ W=(-1,-6)\\ \\ Gdy:\\ a>0~~(ramiona~~paraboli~~skierowane~~do~~gory)~~\land ~~W=(p,q)~~\Rightarrow ~~Z_{w} =(q, + \infty )\\ \\\ a=2~~~~(a>0)~~\land ~~W=(-1,-6)~~\Rightarrow ~~Z_{w} =<-6,+ \infty )\\ \\ Odp:~~c=-4~~a ~~zbior~~wartosci~~funkcji~~kwadratowej~~f(x)~~wynosi~~Z_{w} =<-6,+ \infty ).[/tex]