Skorzystamy z wzorów:
[tex]a^b \cdot a^c = a^{b + c} \\\\a^b : a^c = a^{b - c} \\\\[/tex]
[tex](a^b)^c = a^{b \cdot c}[/tex]
[tex](\cfrac{3}{4})^{10} \cdot (1\cfrac{1}{3})^{11} = (\cfrac{3}{4})^{10} \cdot (\cfrac{4}{3})^{11} = (\cfrac{3}{4})^{10} \cdot (\cfrac{4}{3})^{10} \cdot \cfrac{4}{3} = (\cfrac{3}{4} \cdot \cfrac{4}{3})^{10} \cdot \cfrac{4}{3} =1^{10} \cdot \cfrac{4}{3} = \cfrac{4}{3}[/tex]
[tex]4^{10} : 2 = (2^2)^{10} : 2^1 = 2^{2 \cdot 10} : 2 ^1 = 2^{20 } : 2^1 = 2^{20-1} = 2^{19}[/tex]
#SPJ2