DAJE NAJ!!!
6. Oblicz pole trójkąta równobocznego o boku: a) 8 cm b) 10 cm c) 2√3 cm d) 5√2 cm​



Odpowiedź :

Odpowiedź:

[tex]P=\frac{a^2\sqrt{3} }{4} \\\\a) \frac{8^2\sqrt{3} }{4} =\frac{64\sqrt{3} }{4}=16\sqrt3\\b)\frac{10^2\sqrt{3} }{4}=\frac{100\sqrt{3} }{4}=25\sqrt3\\c)\frac{(2\sqrt3)^2\sqrt{3} }{4}=\frac{4*3\sqrt{3} }{4}=\frac{12\sqrt{3} }{4}=3\sqrt3\\d)\frac{(5\sqrt2)^2\sqrt{3} }{4}=\frac{25*2\sqrt{3} }{4}=\frac{50\sqrt{3} }{4}=12,5\sqrt3[/tex]

[tex]P = \frac{a^{2}\sqrt{3}}{4}[/tex]  -  wzór na pole trójkąta równobocznego

[tex]a) \ a = 8 \ cm\\\\P = \frac{8^{2}\sqrt{3}}{4} =\frac{64\sqrt{3}}{4} = 16\sqrt{3} \ cm^{2}}\\\\\\b) \ a = 10 \ cm\\\\P=\frac{10^{2}\sqrt{3}}{4}=\frac{100\sqrt{3}}{4} = 25\sqrt{3} \ cm^{2}\\\\\\c) \ a = 2\sqrt{3} \ cm\\\\P = \frac{(2\sqrt{3})^{2}\sqrt{3}}{4} =\frac{4\cdot3\sqrt{3}}{4} = \frac{12\sqrt{3}}{4} = 3\sqrt{3} \ cm^{2}\\\\\\d) \ a = 5\sqrt{2} \ cm\\\\P = \frac{(5\sqrt{2})^{2}\sqrt{3}}{4}=\frac{25\cdot2\sqrt{3}}{4} = \frac{50\sqrt{3}}{4} = 12,5\sqrt{3} \ cm^{2}}[/tex]