Odpowiedź :
Wzór na przekątną kwadratu
[tex]d = a \sqrt{2} [/tex]
a)
[tex]a \sqrt{2} = 5 \sqrt{2} | \div \sqrt{2} \\ a = 5[/tex]
b)
[tex]a \sqrt{2} = 0.7 \sqrt{2} | \div \sqrt{2} \\ a = 0.7[/tex]
c)
[tex]a \sqrt{2} = \frac{5 \sqrt{2} }{2} | \times 2 \\ 2a \sqrt{2} = 5 \sqrt{2} | \div \sqrt{2} \\ 2a = 5 | \div 2 \\ a = 2.5[/tex]
d)
[tex]a \sqrt{2} = 3 | \div \sqrt{2} \\ a = \frac{3}{ \sqrt{2} } = \frac{3 \sqrt{2} }{2} = 1.5 \sqrt{2} [/tex]
e)
[tex]a \sqrt{2} = \frac{1}{3} | \times 3 \\ 3a \sqrt{2} = 1 | \div \sqrt{2} \\ 3a = \frac{1}{ \sqrt{2} } \\ 3a = \frac{ \sqrt{2} }{2} \\ 3a = \frac{1}{2} \sqrt{2} | \div 3 \\ a = \frac{1}{2} \sqrt{2} \div \frac{3}{1} = \frac{1}{2} \sqrt{2} \times \frac{1}{3} = \frac{1}{6} \sqrt{2} [/tex]
f)
[tex]a \sqrt{2} = 12 | \div \sqrt{2} \\ a = \frac{12}{ \sqrt{2} } = \frac{12 \sqrt{2} }{2} = 6 \sqrt{2} [/tex]
Myślę że pomogłem ;)