Wzór na wysokość trójkąta równobocznego
[tex] \frac{ a \sqrt{3} }{2} [/tex]
a)
[tex] \frac{a \sqrt{3} }{2} = 2 \sqrt{3} | \times 2 \\ a \sqrt{3} = 4 \sqrt{3} | \div \sqrt{3} \\ a = 4[/tex]
b)
[tex] \frac{a \sqrt{3} }{2} = 10.2 \sqrt{3} | \times 2 \\ a \sqrt{3} = 20.4 \sqrt{3} | \div \sqrt{3} \\ a = 20.4[/tex]
c)
[tex] \frac{a \sqrt{3} }{2} = 9 | \times 2 \\ a \sqrt{3} = 18 | \div \sqrt{3} \\ a = \frac{18}{ \sqrt{3} } = \frac{18 \sqrt{3} }{3} = 6 \sqrt{3} [/tex]
d)
[tex] \frac{a \sqrt{3} }{2} = 15 \sqrt{6} | \times 2 \\ a \sqrt{3} = 30 \sqrt{6} | \div \sqrt{3} \\ a = 30 \sqrt{2} [/tex]
e)
[tex] \frac{a \sqrt{3} }{2} = \frac{3 \sqrt{2} }{2} | \times 2 \\ a \sqrt{3} = 3 \sqrt{2} | \div \sqrt{3} \\ a = \frac{3 \sqrt{2} }{ \sqrt{3} } = \frac{3 \sqrt{6} }{3} = \sqrt{6} [/tex]
f)
[tex] \frac{a \sqrt{3} }{2} = \sqrt{7} | \times 2 \\ a \sqrt{3} = 2 \sqrt{7} | \div \sqrt{3} \\ a = \frac{2 \sqrt{7} }{ \sqrt{3} } = \frac{2 \sqrt{21} }{3} = \frac{2}{3} \sqrt{21} [/tex]
Myślę że pomogłem ;)