Odpowiedź:
[tex]A(-5,4)\ \ ,\ \ B(9,11)\\\\R\'ownanie\ \ prostej\ \ w\ \ postaci\ \ kierunkowej\ \ to\ \ y=ax+b\\\\Rozwiazujemy\ \ uklad\ \ r\'owna\'n\ \ podstawiajac\ \ za\ \ x\ \ i\ \ y\ \ wsp\'olrzedne\ \ punkt\'ow\ \ A\ \ i\ \ B\\\\\\\begin{cases}4=-5a+b\ \ /\cdot(-1)\\11=9a+b\end{cases}\\\\\\+\begin{cases}-4=5a-b\\11=9a+b\end{cases}\\--------\\7=14a\\\\14a=7\ \ /:14\\\\a=\frac{7}{14}\\\\a=\frac{1}{2}\\\\\\4=-5\cdot\frac{1}{2}+b\\\\4=-\frac{5}{2}+b\\\\4+\frac{5}{2}=b\\\\\frac{8}{2}+\frac{5}{2}=b[/tex][tex]\frac{13}{2}=b\\\\b=\frac{13}{2}\\\\\\R\'ownanie\ \ prostej\\\\y=ax+b\\\\\underline{y=\frac{1}{2}x+\frac{13}{2}}[/tex]