Odpowiedź:
Zalozmy ze log2(7) = p/q, gdzie p,q to liczby naturalne. z dzialania logarytmow wiadomo ze z zalozenia wynika: 2^(p/q) = 7, czyli
2^p = 7^q
Ponieważ założyliśmy, że p i q są liczbami naturalnymi, obie strony powyższej równości są liczbami naturalnymi oraz lewa dzieli się przez 2, a prawa nie. Otrzymana sprzeczność dowodzi, że log2(7) nie może być liczbą wymierną.