ZAD 4
P(-8√3 ; -5) ; α = 30°
a = tgα = tg30° = √3/3
-5 = -8√3 * √3/3 + b
-5 = -24/3+b
-5 = -8+b
b = 3
y = x√3/3 + 3
a) P(6√3 ; -1) ; α = 30°
y = ax + b
a = tgα = tg30° = √3/3
-1 = 6√3* √3/3 + b
-1 = 18/3 + b
-1 = 6 + b
b = -7
y = x√3/3 - 7
b) P(√3 ; 2) ; α = 60°
y = ax + b
a = tgα = tg60° = √3
2 = √3*√3 + b
2 = 3+b
b = -1
y = √3x - 1
ZAD 5
P(-5;4)
równoległej do prostej: y = -2x + 1
4 = -5a + b
a = (4-b)/-5
a₁ = a₂
-2 = (4-b)/-5
10 = 4 - b
b = -6
a = (4 -(-6))/-5 = 10/-5 = -2
y = -2x - 6