2. Dla każdej z liczby: 60, 150, 320 znajdź liczbę:
a) o 10% większą,
c) o 50% mniejszą,
b) o 20% mniejszą,
d) o 25% większą.​



Odpowiedź :

60

a)

[tex]60 - 100\% \\ x - 10\% \\ \\ x = \frac{60 \times 10}{100} = \frac{60 \times 1}{10} = 6[/tex]

[tex]60 + 6 = 66[/tex]

b)

[tex]60 - 100\% \\ x - 50\% \\ \\ x = \frac{60 \times 50}{100} = \frac{60 \times 1}{2} = 30[/tex]

[tex]60 - 30 = 30[/tex]

c)

[tex]60 - 100\% \\ x - 20\% \\ \\ x = \frac{60 \times 20}{100} = \frac{60 \times 1}{5} = 12[/tex]

[tex]60 - 12 = 48[/tex]

d)

[tex]60 - 100\% \\ x - 25\% \\ \\ x = \frac{60 \times 25}{100} = \frac{60 \times 1}{4} = 15[/tex]

[tex]60 + 15 = 75[/tex]

150

a)

[tex]150 - 100\% \\ x - 10\% \\ \\ x = \frac{150 \times 10}{100} = \frac{3 \times 10}{2} = \frac{30}{2} = 15[/tex]

[tex]150 + 15 = 165[/tex]

b)

[tex]150 -100\% \\ x - 50\% \\ \\ x = \frac{150 \times 50}{100} = \frac{150 \times 1}{2} = 75[/tex]

[tex]150 - 75 = 75[/tex]

c)

[tex]150 - 100\% \\ x - 20\% \\ \\ x = \frac{150 \times 20}{100} = \frac{150 \times 1}{5} = 30[/tex]

[tex]150 - 30 = 120[/tex]

d)

[tex]150 - 100\% \\ x - 25 \% \\ \\ x = \frac{150 \times 25}{100} = \frac{150 \times 1}{4} = 37.5[/tex]

[tex]150 + 37.5 = 187.5[/tex]

320

a)

[tex]320 - 100\% \\ x - 10\% \\ \\ x = \frac{320 \times 10}{100} = 3.2 \times 10 = 32[/tex]

[tex]320 + 32 = 352[/tex]

b)

[tex]320 - 100\% \\ x - 50\% \\ \\ x = \frac{320 \times 50}{100} = \frac{320 \times 1}{2} = 160[/tex]

[tex]320 - 160 = 160[/tex]

c)

[tex]320 - 100\% \\ x - 20\% \\ \\ x = \frac{320 \times 20}{100} = \frac{320 \times 1}{5} = 64[/tex]

[tex]320 - 64 = 256[/tex]

d)

[tex]320 - 100\% \\ x - 25\% \\ \\ x = \frac{320 \times 25}{100} = \frac{320 \times 1}{4} = 80[/tex]

[tex]320 + 80 = 400[/tex]