Odpowiedź:
1.
[tex]F = G \frac{M_z M_k}{R^2}[/tex]
2.
a)
[tex]a = G\frac{M_P}{R}\\M_P = \frac{aR}{G}[/tex]
b)
[tex]d = \frac{M_P}{V}\\\\V= \frac{4}{3} \pi R^3\\d = \frac{M_P}{ \frac{4}{3} \pi R^3}[/tex]
c)
[tex]F = G \frac{M_P * 5 kg}{R^2} = a*5kg[/tex]
d)
*w porównaniu z powierzchnia
[tex]h=d-R\\\frac{84}{100} \frac{G M_P M}{ R^2}= \frac{G M_P M}{ d^2}\\\\d^2 = R^2 *\frac{100}{84} \\d = R * \sqrt{\frac{100}{84}}\\\\h = R(\sqrt{\frac{100}{84}} -1)[/tex]
e)
[tex]F = G \frac{M_S M_P}{R_S^2}\\R_S = \sqrt {\frac{G M_S M_P}{F}}[/tex]
Wyjaśnienie: