Poproszę o rozwiązanie zadań daje 100p
[tex]a\left \{ {{x^{2} + y^{2} =13 } \atop {x-y-4=0}} \right. \\b\left \{ {{x^{2} -y^{2} =3} \atop {x-y=1}} \right. \\c\left \{ {{xy=5} \atop {x-y=0}} \right.[/tex]



Odpowiedź :

Odpowiedź:

a)

x² + y² = 13

x - y - 4 = 0 ⇒ x = y + 4

(y + 4)² + y² = 13

y² + 8y + 16 + y² = 13

2y² + 8y + 16 - 13 = 0

2y² + 8y + 3 = 0

a = 2 , b = 8 , c = 3

Δ = b² - 4ac = 8² - 4 * 2 * 3 = 64 - 24 = 40

√Δ = √40 = √(4 * 10) = 2√10

y₁ = ( - b - √Δ)/2a = ( - 8 - 2√10)/4 = - 2(4 + √10)/4 = - (4 + √10)/2

y₂ = ( - b + √Δ)/2a = ( - 8 + 2√10)/4 = 2(√10 - 4)/4 = (√10 - 4)/2

x₁ = y₁ + 4 = - (4 + √10)/2 + 4 = (- 4 - √10 + 8)/2 = (4 - √10)/2

x₂ = y₂ + 4 = (√10 - 4)/2 + 4 = (√10 - 4 + 8)/2 = (√10 + 4)/2

b)

x² - y² = 3

x - y = 1 ⇒ x = y + 1

(y + 1)² - y² = 3

y² + 2y + 1 - y² = 3

2y + 1 = 3

2y = 3 - 1 = 2

y = 2/2 = 1

x - y = 1

x - 1 = 1

x = 1 + 1 = 2

c)

xy = 5

x - y = 0 ⇒ x = y

x * x = 5

x² = 5

x² - 5 = 0

(x - √5)(x + √5) = 0

x - √5 = 0 ∨ x + √5 = 0

x₁ = √5 ∨ x₂ = - √5

y₁ = √5 ∨ y₂ = - √5