1) pole podstawy = [tex]\frac{a^{2}\sqrt{3} }{4}[/tex] → [tex]\frac{\sqrt{3}^{2}*\sqrt{3} }{4}[/tex]=[tex]\frac{3\sqrt{3} }{4}[/tex]
objętość = Pp*h*[tex]\frac{1}{3}[/tex] → [tex]\frac{3\sqrt{3} }{4} *5*\frac{1}{3}[/tex] = [tex]\frac{5\sqrt{3} }{4}[/tex]
2) Pp = [tex]a^{2}[/tex] → [tex]5^{2}[/tex] = 25
V = h*Pp*[tex]\frac{1}{3}[/tex] → 4*25*[tex]\frac{1}{3}[/tex] = 33,3
3) Pp = [tex]\frac{3a^{2}\sqrt{3} }{2}[/tex] → [tex]\frac{3*1^{2}\sqrt{3} }{2}[/tex] = [tex]\frac{3\sqrt{3} }{2}[/tex]
V = h*Pp * [tex]\frac{1}{3}[/tex] → [tex]10*\frac{3\sqrt{3} }{4} * \frac{1}{3} = 5\sqrt{3}[/tex]