Odpowiedź :
[tex]c) \: \: \frac{x + 2}{9} + \frac{x - 1}{3} = 1 \\ x + 2 + 3(x - 1) = 9 \\ x + 2 + 3x - 3 = 9 \\ 4x - 1 = 9 \\ 4x = 9 + 1 \\ 4x = 10 \: \: \: \: \: \div 4 \\ x = \frac{5}{2} = 2 \frac{1}{2} [/tex]
[tex]d) \frac{2x + 3}{5} = \frac{2 - x}{3} + x \: \: \: \: \: \: \: \: \times 15 \\ 3(2x + 3) = 5(2 - x) + 15x \\ 6x + 9 = 10 - 5x + 15x \\ 6x + 9 = 10 + 10x \\ 6x - 10x = 10 - 9 \\ - 4x = 1 \: \: \: \: \: \: \: \div - 4 \\ x = - \frac{1}{4} [/tex]
Odpowiedź:
c)
(x + 2)/9 + (x - 1)/3 = 1
1/9x + 2/9 + 1/3x - 1/3 = 1
1/9x + 3/9x = 1 - 2/9 + 3/9
4/9x = 1 + 1/9 /*9/4
x = 9/4 * 1 1/9 = 9/4 * 10/9 = 5/2 = 2 1/2
d)
(2x + 3)/5 = (2 - x)/3 + x
2/5x + 3/5 = 2/3 - 1/3x + x
2/5x - 2/3x = 2/3 - 3/5
6/15x - 10/15x = 10/15 - 6/15
-4/15x = 4/15 /*(-15/4)
x = -1
Szczegółowe wyjaśnienie: