Odpowiedź:
[tex]a)\ \ (\sqrt{17})^2-(\sqrt{24})^2=17-24=-7\\\\b)\ \ (-2)\cdot(\sqrt{5})^2+\sqrt{1}=-2\cdot5+1=-10+1=-9\\\\c)\ \ \left(\sqrt{\frac{1}{3}}\right)^2\cdot\sqrt{\frac{1}{25}}=\frac{1}{3}\cdot\frac{1}{5}=\frac{1}{15}\\\\d)\ \ -(\sqrt[3]{7})^3+(\sqrt[3]{23})^3=-7+23=16\\\\e)\ \ (\sqrt[3]{4})^3+\sqrt[3]{125}:(-5)=4+5:(-5)=4+(-1)=4-1=3\\\\f)\ \ \sqrt[3]{\frac{1}{125}}-\left(\sqrt[3]{\frac{1}{5}}\right)^3=\frac{1}{5}-\frac{1}{5}=0[/tex]