W ostrosłupie prawidłowym trójkątnym krawędź boczna ma 15cm, a krawędź podstawy 10cm. Oblicz pole powierzchni bocznej tego ostrosłupa i pole powierzchni całkowitej.

SZYBKO PLISSS​​



Odpowiedź :

Pole podstawy

[tex] \frac{ {10}^{2} \sqrt{3} }{4} = \frac{100 \sqrt{3} }{4} = 25 \sqrt{3} {cm}^{2} [/tex]

Wysokość ściany bocznej

[tex] {15}^{2} = {x}^{2} + {5}^{2} \\ 225 = {x}^{2} + 25 \\ {x}^{2} = 200 \\ x = \sqrt{200} \\ x = \sqrt{100 \times 2} \\ x = 10 \sqrt{2} cm[/tex]

Pole ściany bocznej

[tex] \frac{10 \times 10 \sqrt{2} }{2} = 5 \times 10 \sqrt{2} = 50 \sqrt{2} {cm}^{2} [/tex]

Pole boczne

[tex]50 \sqrt{2} \times 3 = \boxed{150 \sqrt{3} {cm}^{2} }[/tex]

Pole całkowite

[tex]150 \sqrt{3} + 25 \sqrt{3} = \boxed{175 \sqrt{3} {cm}^{2} }[/tex]