Odpowiedź:
[tex](3\sqrt{3}x^{4}-2\sqrt{6}y^{5})^{2} =\\\\= (3\sqrt{3}x^{4})^{2}-2\cdot3\sqrt{3}x^{4}\cdot2\sqrt{6}y^{5} + (2\sqrt{6}y^{5})^{2}=\\\\=27x^{8}-12\sqrt{3\cdot6}x^{4}y^{5}+24y^{10}=\\\\=27x^{8}-12\sqrt{18}x^{4}y^{5}+24y^{10} =\\\\=27x^{8}-12\sqrt{9\cdot2}x^{4}y^{5}+24y^{10} =\\\\=27x^{8}-12\cdot3\sqrt{2}x^{4}y^{5}+24y^{10}=\\\\=\underline{27x^{8}-36\sqrt{2}x^{4}y^{5}+24y^{10}}[/tex]
Szczegółowe wyjaśnienie:
[tex](a-b)^{2} = a^{2}-2ab+b^{2}[/tex]
[tex](a^{m})^{n} = a^{m\cdot n}[/tex]