Odpowiedź:
[tex]E=806kJ[/tex]
Wyjaśnienie:
Dane:
[tex]m=2kg[/tex]
[tex]t_1=-10^0C[/tex]
[tex]t_2=0^0C[/tex] → temperatura topnienia lodu
[tex]t_3=10^0C[/tex]
[tex]c_l=2100\frac{J}{kg^*^0C}[/tex] → ciepło właściwe lodu
[tex]c_t=340000\frac{J}{kg}[/tex] → ciepło topnienia lodu
[tex]c_w=4200\frac{J}{kg*^0C}[/tex] → ciepło właściwe wody
[tex]Szukane:E=Q[/tex]
Rozwiązanie:
Podczas ogrzewania bryłki lodu zachodzą następujące procesy:
1. Ogrzewanie lodu do temperatury topnienia: Q₁
[tex]Q_1=m*c_l*\Delta T[/tex]
[tex]Q_1=2kg*2100\frac{J}{kg^0C}*[{0^0C-(-10^0C)]=42000J=42kJ[/tex]
2. Topnienie lodu: Q₂
[tex]Q_2=m*c_t[/tex]
[tex]Q_2=2kg*340000\frac{J}{kg}=680000J=680kJ[/tex]
3. ogrzewanie wody powstałej po stopieniu lodu: Q₃
[tex]Q_3=m*c_w*\Delta T[/tex]
[tex]Q_3=2kg*4200\frac{J}{kg*^0C}*(10^0C-0^8C)=84000J=84kJ[/tex]
Całkowita ilość dostarczonej energii:
[tex]E=Q_1+Q_2+Q_3[/tex]
[tex]E=42kJ+680kJ+84kJ=806kJ[/tex]