e, f - przekątne rombu
e = 24 - 3 x + y
dla x = 3,5 i y = - 1,5
e = 24 - 3 · 3,5 + ( - 1,5 ) = 24 - 10,5 - 1,5 = 12
f = 5 x + 4 y - 2,5
dla x = 3,5 i y = - 1,5
f = 5 · 3,5 + 4 · ( - 1,5 ) - 2,5 = 17,5 - 6 - 2,5 = 9
obliczam długośc boku rombu, korzystając z twierdzenia Pitagorasa
a - długość boku rombu
[tex](\frac12e)^2+(\frac12f)^2=a^2\\\\(\frac12\ \cdot\ 12)^2+(\frac12\ \cdot\ 9)^2=a^2\\\\6^2+4,5^2=a^2\\\\a^2=36+20,25\\\\a^2=56,25\\\\a=\sqrt{56,25}\\\\a=7,5[/tex]
obliczam obwód rombu:
L - obwód rombu
L = 4 · a
L = 4 · 7,5
L = 30