Odpowiedź :
1)
[tex]2^{x} = 32\\\\2^{x} = 2^{5}\\\\\boxed{x = 5}[/tex]
2)
[tex]2^{x+1} = 32\\\\2^{x+1} = 2^{5}\\\\x+1 = 5\\\\x = 5-1\\\\\boxed{x = 4}[/tex]
3)
[tex]5\cdot2^{x} = 40 \ \ \ |:5\\\\2^{x} = 8\\\\2^{x} = 2^{3}\\\\\boxed{x = 3}[/tex]
4)
[tex]2^{4x+9} = 32\\\\2^{4x+9} = 2^{5}\\\\4x+9 = 5\\\\4x = 5-9\\\\4x = -4 \ \ \ |:4\\\\\boxed{x = -1}[/tex]
5)
[tex]4\cdot2^{x}+7 = 39\\\\2^{2}\cdot2^{x} =39-7\\\\2^{2+x} = 32\\\\2^{2+x} = 2^{5}\\\\2+x = 5\\\\x = 5-2\\\\\boxed{x = 3}[/tex]
6)
[tex]2^{x}\cdot2^{x}\cdot 2^{x} =8\\\\2^{3x} = 2^{3}\\\\3x = 3 \ \ |:3\\\\\boxed{x = 1}[/tex]
7)
[tex]2^{x}\cdot2^{2x} = 512\\\\2^{x+2x} = 2^{9}\\\\2^{3x} = 2^{9}\\\\3x = 9 \ \ |:3\\\\\boxed{x = 3}[/tex]
8)
[tex]2^{x}\cdot4^{x} = 64\\\\(2\cdot4)^{x} = 64\\\\8^{x} = 8^{2}\\\\\boxed{x = 2}[/tex]
Rozwiązanie równania wykladniczego polega na doprowadzeniu po obu stronach równania do postaci potęg o równych podstawach. Wówczas z twierdzenia o równości potęg przyrównujemy do siebie wykładniki tych potęg.
Odpowiedź:
[tex]1) \: \: \: {2}^{x} = 32 \\ {2}^{x} = {2}^{5 } \\ x = 5 \\ \\ 2) \: \: \: {2}^{x + 1} = 32 \\ {2}^{x + 1} = {2}^{5 } \\ x + 1 = 5 \\ x = 4[/tex]
[tex]3) \: \: \: 5 \times {2}^{x} = 40 \\ {2}^{x } = 8 \\ {2}^{x} = {2}^{3 } \\ x = 3 \\ \\ 4) \: \: \: {2}^{4x + 9} = 32 \\ {2}^{4x + 9} = {2}^{5 } \\ 4x + 9 = 5 \\ 4x = - 4 \\ x = - 1[/tex]
[tex]5) \: \: \: 4 \times {2}^{x} + 7 = 39 \\ {2}^{2} \times {2}^{x} = 32 \\ {2}^{2 + x} = {2}^{5} \\ 2 + x = 5 \\ x = 3 \\ \\ 6) \: \: {2}^{x} \times {2}^{x} \times {2}^{x} = 8 \\ {2}^{3x} = {2}^{3} \\ 3x = 3 \\ x = 1[/tex]
[tex]7) \: \: \: {2}^{x} \times {2}^{2x} = 512 \\ {2}^{3x} = {2}^{9} \\ 3x = 9 \\ x = 3 \\ \\ 8) \: \: \: {2}^{x} \times {4}^{x} = 64 \\ {2}^{x} \times ({ {2}^{2}) }^{x} = {2}^{6 } \\ {2}^{x } \times {2}^{2x} = {2}^{6 } \\ {2}^{3x} = {2}^{6} \\ 3x = 6 \\ x = 2[/tex]