Clowy923
Rozwiązane

Rozwiąż NIERÓWNOŚĆ [tex]2 - x^{2} \ \textless \ (2-x){2}[/tex]



Odpowiedź :

[tex]2-x^{2} < (2-x)^{2}[/tex]

             (a - b)² = a² - 2ab + b²

             (2 - x)² = 2² - 2 · 2 · x + x² = 4 - 4x + x²

[tex]2-x^{2} < 4 - 4x + x^{2}\\\\-x^{2}-x^{2}+4x+2-4 < 0\\\\-2x^{2}+4x-2 < 0 \ \ \ |:(-2)\\\\\underline{x^{2}-2x+1 > 0}\\\\M. \ zerowe:\\\\(x-1)^{2} = 0\\\\x-1 = 0\\\\x = 1\\\\\underline{x \in (-\infty;1) \ \cup \ (1;+\infty)}[/tex]