Odpowiedź:
Szczegółowe wyjaśnienie:
wzór na odległość między punktami:
d=√((x_2-x_1)²+(y_2-y_1)²)
d= √((5+√3 - 1/(2-√3)^2 + (-2 +5)^2 (mnoże 1/(2-√3) przez 1 w postaci (2+√3)/(2+√3), żeby pozbyc się pierwiastka z dołu)
d = √((5+√3 - (2+√3)/(4+9)) + (3)^2)
d = √((5+√3 - (2+√3)/13)^2 + 9)
d = √((25 + 3 - (4 + 3)/169) +9)
d = √(28 - 7/169) + 9
d ~= √ (27,059 + 9)
d = √36
d = 6
na dole podsyłam screen jak wymnożyłem 1/(2-√3) przez 1