Odpowiedź:
[tex]a) \: \: \sqrt{432} = \sqrt{144 \times 3} = \sqrt{ {12}^{2} \times 3} = 12 \sqrt{3} \\ b) \: \: \sqrt{448} = \sqrt{64 \times 7} = \sqrt{ {8}^{2} \times 7} = 8 \sqrt{7} [/tex]
[tex]c) \: \: \sqrt{864} = \sqrt{144 \times 6} = \sqrt{ {12}^{2} \times 6} = 12 \sqrt{6} [/tex]
[tex]d) \: \: \sqrt{972} = \sqrt{324 \times 3} = \sqrt{ {18}^{2} \times 3 } = 18 \sqrt{3} [/tex]
[tex]e) \: \: \sqrt[3]{432} = \sqrt[3]{216 \times 2} = \sqrt[3]{ {6}^{3} \times 2} = 6 \sqrt[3]{2} [/tex]
[tex]f) \: \: \sqrt[3]{1375} = \sqrt[3]{125 \times 11} = \sqrt[3]{ {5}^{3} \times 11 } = 5 \sqrt[3]{11} [/tex]
[tex]g) \: \: \sqrt[3]{ - 375} = \sqrt[3]{ - 125 \times 3} = \sqrt[3]{( - 5 {)}^{3} \times 3} = - 5 \sqrt[3]{3} [/tex]
[tex]h) \: \: \sqrt[3]{ - 3645} = \sqrt[3]{ - 729 \times 5} = \sqrt[3]{( - 9 {)}^{3} \times 5 } = - 9 \sqrt[3]{5} [/tex]